En poursuivant votre navigation sur ce site, vous acceptez l'utilisation de cookies pour recueillir vos informations de connexion, collecter des statistiques en vue d'optimiser les fonctionnalités du site et adapter son contenu à vos centres d'intérêt.
En savoir plus et paramétrer les cookies Accepter
Comparateur de logiciels de gestion
Avec notre comparateur en ligne, trouvez en quelques clics la solution à votre besoin
agenda
Agenda
Solutions IT
  • 21/03/2018
    Cloud Computing World Expo et Solutions Datacenter Management

    La 9ème édition de l’évènement phare du Cloud et des datacenters a lieu les 21…

    en détail En détail...
  • 20/03/2018
    Edition 2018 des salons Solutions RH

    L’édition 2018 du rendez-vous de toute la communauté RH, avec 3 grandes manifestations aura lieu…

    en détail En détail...

Machine Learning et Deep Learning : vers une redéfinition de la cybersécurité par l’intelligence

Laurent Heslault, directeur des stratégies de sécurité chez Symantec, s’est penché sur le machine Learning et le deep learning, ou comment redéfinir la cybersécurité par l’intelligence.

Cinq grandes entreprises sur six touchées par des cyberattaques dans l’année, plus d’un million de malwares créés chaque jour, des attaques ciblées perpétrées grâce à des vulnérabilités toujours plus nombreuses … les cybercriminels développent en permanence des techniques toujours plus élaborées pour mener des attaques toujours plus persistantes. La protection des entreprises, de leurs données et de celles de leurs clients n’a jamais été aussi complexe ni cruciale, et ne peut plus se contenter d’être partielle. Elle doit adopter une approche holistique et intelligente de la cybersécurité, fondée sur une conjugaison d’un machine learning (ou apprentissage automatique) multidimensionnel et du deep learning (apprentissage profond), et in fine, d’une qualité de données et d’algorithmes qui doivent sans cesse être améliorées

Qu’est-ce qu’une protection contre les menaces intelligentes ?

Il convient de définir tout d’abord à quelles attentes elle doit répondre : le blocage des menaces avancées et des attaques zero day, le durcissement et la prévention des exploits bien sûr, mais également la prévention proactive des attaques en temps réel, des besoins d’identification et de remédiation rapide, sans oublier des performances élevées et des faux positifs les plus limités possibles.

Le machine learning, à condition qu’il soit multidimensionnel et qu’il utilise une télémétrie étendue et étayée, permet de répondre à ces besoins. S’il utilise uniquement des classificateurs tels que des URL ou des fichiers malveillants déterminés, sa performance risque d’être limitée : il ne se fonde ainsi que sur des comportements déterminés par des attaquants, que ces derniers peuvent modifier pour faire évoluer leur technique d’attaque, et que le système ne détectera pas. Pour être efficace, le machine learning doit être véritablement multidimensionnel, à savoir conjuguer le développement traditionnel tel que décrit ci-dessus avec une approche basée sur « la sagesse populaire », dans le Cloud et non uniquement sur les postes de travail, qui calcule la sécurité de chaque fichier de logiciel et de chaque URL d’Internet en analysant les modèles d’adoption de ceux-ci par le plus grand nombre possible d’utilisateurs. Cette « masse » d’utilisateurs doit en outre être catégorisée selon leur profil et géographie afin de permettre l’analyse la plus précise et la plus juste : novices, expérimentés, types de sites visités ou pas, fichiers utilisés ou non, taux d’utilisation, cibles fréquentes d’attaques… toutes ces informations contextuelles et anonymes permettent de dresser un portrait qui échappe à la maitrise des cyber-attaquants. L’aspect multidimensionnel est donc une clé essentielle pour assurer une meilleure protection des systèmes.

Machine Learning + deep learning

Ce machine learning avancé peut être complété par du deep learning. Utilisant des réseaux neuronaux artificiels inspirés par le cerveau humain, il permet d’apprendre d’une manière similaire à la nôtre. Les réseaux de deep learning sont capables de s’abstraire progressivement des données brutes pour les transformer en des concepts plus complexes. Cette capacité de généralisation hiérarchique leur confère des propriétés statistiques robustes et leur permet ainsi d’intégrer des données peu identifiées, de reconstruire des informations parcellaires de détecter des anomalies, même infimes. On devine ici les possibilités offertes dans la détection de signaux faibles de menaces et des techniques complexes et souvent uniques qui caractérisent les attaques ciblées. Cette approche, par essence en évolution et en amélioration permanentes, s’avère donc prometteuse pour une cybersécurité toujours plus précise et efficiente.

L’intelligence artificielle, à travers le machine learning et le deep learning, trouve ainsi des débouchés particulièrement pertinents, nécessaires et utiles pour une cybersécurité… intelligente. Cette intelligence a par ailleurs pour corollaire la volonté de protéger et d’innover qui doit caractériser toute entreprise technologique.

Machine Learning et Deep Learning : vers une redéfinition de la cybersécurité par l’intelligence
Notez cet article

Laisser un commentaire

L’intelligence Artificielle, une vraie rupture en Cybersécurité

L'IA ne révolutionne pas seulement la perception de la cybersécurité au coeur des entreprises, elle redéfinit les règles du jeu pour l'ensemble des acteurs de la sécurité. Découvrez le livre blanc de 30 pages de iTrust

Découvrez le livre blanc de 30 pages de iTrust

Sondage

RGPD : ETES-VOUS PRÊT ? Le Règlement Général sur la Protection des Données entre en application le 25 mai 2018.

Voir les résultats

Loading ... Loading ...
Nos derniers dossiers
Témoignages
Juridique
  • Un adolescent britannique poursuivi pour avoir piraté le compte d'un ex-chef de la CIA

    Un adolescent britannique ayant réussi à pirater les comptes de plusieurs responsables américains du Renseignement…

    > En savoir plus...
Paroles d'experts
Paroles
d'experts
  • Shadow IT et RGPD : le CASB, un "sas protecteur entre Cloud et utilisateurs", Joël Mollo, Skyhigh

    L’utilisation par les employés de services Cloud non validés par leur direction informatique représente un…

    > En savoir plus...
Etudes/Enquêtes
  • Ransomware : la France paie un lourd tribut,175 000 € en moyenne

    Avec un coût médian de 175 000 €, la France est le deuxième pays le…

    > En savoir plus...
newsletter
Inscription Newsletter

Restez informé. L’abonnement à la newsletter est gratuit.

> Abonnement

Guide de la cybersécurité 2017-2018

Agenda
livres blancs
Les Livres
Blancs
  • Livre blanc « Digital Needs Trust " : pour construire ensemble un écosystème digital européen…

    > Voir le livre
  • Adopter un Plan de Continuité d’Activité (PCA)

    > Voir le livre